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GEVERAL CONSIDERATIONS ON THE FLOW OF CONPRESSIBLE FLUIDS*

By L. Prandtl

Rreliminarylnemark

The Royal Acadeny of Italy has conferred upon me the
honor of opening the theoretical division of this year's
Volta Congress by a lecture which shall serve as an intro-

“duction to the subject of the flow of- compressible media,
In view of the limited time available, I shall entirely.
omit any description of the historical development of this
branch of the. science and shall also pass over the very
familiar phenomena of hydraulics that receive the usual
one~dimensional treatment as, for example, the discharge.
from orifices, the Laval nozzle, etce I shall confine my-
self, rather, to a consideration of the most important
properties of thegse flows, from a modern point of view,
starting from the differential equations of compressible
flow.

I. INTRODUCTORY CONSIDERATIONS

The problem of the motion of fluids which is already
sufficiently involved even when considered as incompressi-
ble, becomes still further complicated and more difficult
when the property of compressibility is taken into account,
In the majority of cases, therefore, when the compressi-
bility is to be allowed for, we are forced to make simpli-
fying assumptions in some other direction. Thus in our
discussion we shall have to neglect viscosity and so -as-
sume our fluid to be frictionléss and compressible. We
shall further assume that the density of the compressible
fluid depends on the pressure only and such inhomogenei-
ties as, for example, the heat conducted to the fluid from
the outside or arising from inner combustion, are excluded

. " . :

*"Allgemeine Ueberlegungen Uber die Stromung zusammen-
druckbarer Flussigkeiten." . (Paper on High Speed in
Aviation, read at the 5th Volta Congress, at Rome,
September 30 to October 5, 1935.) Reale Accademia
dt'Italia, Classe delle Scienze Fisiche, Matematiche
e Naturali.
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from our discussion. We assume that the relation between
the pressure P and the density p 1is uniguely deter-
mined,

For this frictionless, homogeneous, compressible flu-
id, just as for the frictionless, homogeneous, incompres-
sible fluid, the law of Lagrange applies, namely, that a
fluid without initial circulation continues to move with-
out circulation. It may be observed that this law holds
true for steady motion only. Where the velocities are
higher than that of sound, the motion beglins to be un-
steady with the occurrence of irreversible compressions,
leading to an increase in entropy. In this way homogenei-
ty- is in general destroyed and the Lagranglan law is no
longer applicable.

Since the state of rest is a special case of irrota-
tional motion, any compressible fluid flow starting from
rest, whether steady or unsteady, is an irrotational flow,
and as such may therefore be represented by a velocity po-
tential whose gradient is the velocity.

V = grad ¢ - " (1)
the components being
w=292% -230 o._-23% (1a)
ox oy oz

For such potential flows of homogeneous frictionless
fluids the Bernoulli eguation may be applied:

8%, vZ - '
at+2+P U= f£(t} (2)

: 3 : | .
In this-equation P=J 7?— denotes the pressure func-

tion and U . the force function; in the case where gravity
~is the force considered U = - gz; f(t). is an ardbitrary
function of time. Another equation to be considered is

the equation of continuity which is an expression of the
constancy of the mass. We may express it either by saying

that a definite element of volume of the same particle of

fluid continues to maintain a constant mass or that the

po_lass of an element of fixed volume changes with time so vd/‘
atymore flows in than flows out. - From either point of
view we arrive at the equation

P 4 oaiv (pV) = (3)

3t 0
)
b\;u“e,-—\!.g(/" = - «-P (<D (,\‘J

P e " o < u . o
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’%L; r PdeV/ + v gud P =0 (3)

where it is possible to. put div (pV) = p aiv Vv + V
grad p (where the dot denotes the scalar product). Egua-

non &

tions (2) and (3), together with (1), define-our. problem.
Except where meteorological applications are considered,
gravity generally plays a subordinate part in problems
connected with compressible flow, so that it is always
possible to neglect the term containing U. In such.cases
as -are considered in acoustics where the velocities are
small and rapidly changing; the guadratic terms (VZ/2 in
equation (2) and V - grad p- in eguation (3)) may be neg-
lected. By equation (1) and the relation div grad. ® s Ad
equation (3).may then be written ' L ' :

P’
N

35+ pao = 0 - (3a)

We now differentiaté equation (2) with respect to time
and write ' ’ '

TOR_1dp e _ o ap . O (za)
p

3t " p dp. T 3  p Ob

The dimensions of dp/dp are those of a velocity

squared and it may therefore be set equal to c2, where
the velocity ¢ is still a function of p; when the ve-
locity is zero at infinity, f£(t) may be set equal to a
constant, The differentiated equation (2) thus becomes

o2 p ot

2 2
From the relations (3a) and (4) the equation is further

reduced to
a

2—;—2— = c2A0 = C%Vg-t]'? : (5)

which is the familiar differential equation of sound., A
well-known solution of this differential equation is the
plane sound wave, corresponding to the eguation

c e 8 =R (- et o (8)
and which travels with veiocity ¢, the form of the wave
being given by the gquite arbitrary function F. Another
solution is the-spherical wave whose equation is
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<I>='3‘Tf_(r—ct) (7)

where r denotes the distance from a center., The poten-
tial for the cylindrical wave is less simple. It may be
written

L2 (t) at
Jlct - £ - r°

' In all these examples ¢ clearly signifies the veloc-
ity with which the waves travel outward, It is customary
to call this velocity, which we have assumed above as a
function of the density, the velocity of sound. The fact
that in the above equations we have treated it as a con-
stant clearly shows that the solutions are only approxi~
mations for very small sound amplitudes where the density
nowhere differs much from the initial density Po For

finite amplitudes it is necessary to go back to the exact
equations (2) and (3) and e thus arrive at the result
first obtained by Riemann,) that the regions of condensa-~
tion move forward at a greater velocity than the regions
of rarefaction and therefore the wave front becomes steep-
er and steepcr until an unstable wave is formed which is
known as a "shock wave.! Since in the condensed region
the gas moves forward, and moves backward in the rarefied
region, while the impact wave moves with velocities that
do not differ much from the sound velocity, we have the
result that the relative velocity between the shock wave
and the condensed region is smaller, and that between the
impact wave and the rarefied region larger, than the sound
velocity.

® =/ (8)

II. STEADY POTENTIAL FLOW

The above gualitative discussion will be sufficient
for the case of the unsteady sound motions with small flow
paths. I shall now turn to the main subject of my lecture,
namely, steady potential flow.  If we again neglect grav-
ity equations (2) and (3) assume the form

C‘\.

‘il‘ v 2 _ .
5+ P (p) = const (21)
and A - -
div v +_% V. grad p = 0 . - (2D)

—_— —_———

- O A RN
*See reference 1, :
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We may now set

L ad g = e s L _
5 8rad p = 5 iﬁ ‘grad p= Zw grad B

and find- grad P from (2b). We thus obtain |

R V2 _ . |
div Vv - cg'v + grad 5= 0 : (9)

L
Expressed 1n rectangular components. wu, v, w, Wwe may write
V o grad 7V /2 as follows: ‘ '

on

Va. : Ny _ aaV
V . grad —-2—::(V "V)V c V= u:aa—:—:--}- v

oy

e (B ) e (B ) e (T B

+w2—'—_-

‘Equation (9) expressed in cartesian coordinates thus as-

sumes the form

ou (. B, ( s DAL IR o
x (l" c? 1= 2 TR ce RS
- ~ & (9a)
2 dou aw . aw> _
- uwv 5y + vw 5% + $a 5%/ = 0
rﬁ'— A
(In this equation use was made of the relation g% = %%

derived from the condition of irrotational motion, and the
corresponding relations for the other components.)

From the form of equation (9) or (89a) it is immedi=~
ately evident that in all cases where the velocity compo-
nents are all small in comparison with the sound velocity,
the relation reduces to

.

div V 0]
or
ou oV ', ow
+ £X 4 SF =
ox. .dy Oz 0

When the resulting velocity is not vanighingly small com-
pared to the velocity of sound, but still is smaller than
the latter, then the guantitative relations are changed
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although the character of the motion still remains entire-
ly similar to that of incompressible fluids. To see what
eqaatlon (9) tells us when the flow velocltles are of the
order of magnitude of the sound velocity, we may so ar-—
range the system of coordinates that the X axis coincides
with the direction of flow. Then only the velocity compo-
nent u, in the neighborhood of the origin, will be of
the order of magnitude of ¢, while the velocity compo-
nents v and w. will be small compared to c¢. ZEquation
(9a) then reduces to

au< _1_1_?_> OV , oW _ o '
3% 1 o2 + 57 +’az =0 . (10)

If we now assume that 1w increases in the direction
of the flow corresponding to a fall in pressure in that
direction, then au/ax is positive. From eguation (10),

ov w .
therefore, §§-+ %; is negative when u® < ¢® and posi-
tive when uf > c2 and becomes zero for u? =-c2. Ex~-

pressed in words, this means that the flow converges with

increasing veloc1ty when the veloc1ty 1s less than that
of sound but diverges when the velocity is greater than
that of sound, and moreover, that when the velocity pass-
es through the sound velocity the streamlines are paral-
‘lel. This conclusion fully agrees with what is found for
the flow through a Laval nozzle from elementary considera-
tions. In that case, too, it is found that when the pres-
sure falls throughout the length of the nozzle the veloc-
ity in the converging part of the nogzgzle is smaller than
the sound velocity and 1n the diverging part is greater.
The sound velocity is WAV just where the cross sec~
tion of the nozzle is a minimum,

Eguation (lO) however, tells us more. If we intro-
duce *the relation glven by equation (1), we obtain

2 2’9 30 '
<l j4 e) 572 * 5—2 =0 (10a)

T ~—

Nt ~

If we con51der the immediate nelghborhggﬂ of some def-
inite point, it is sufficient to set (Cu egual to its mean

value in the region under consideration. Using this sim-
plification, there is obtained a very well~known partial
differential ecquation. This is of the elliptic type for

the case where the expression 1 - ua/ca is positive;
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gf,w-ilw
that is, it is entirely related to the differential equal

for incompressible flow) When 1 - 2/c is negative,

however, which is true when the velocity - u -is-greater..
than the sound velocity, then the elliptic type goes over
into the hyperbolic type. It is known, however, that.the
solutions of the ell1pt1c type are regular within the re-
gion, whereas those of the hyperbolic type also admit of
discontinuous solutlons within the region, running through
the range of the so- called characteristics of the differ—
ential equation. What is typical of both cases may be .
seen from the following consideration, which starts out

~from the well-known 31ngular1ty in a flow gource of an in-

compressible fluid

<® )%zﬁ/ + y2 +z3>

Let us inquire what is the form of the potential of
such a source when the flow from the source has a constant
velocity of the order of magnitude of the velocity of sound
superimposed upon it. The problem may be simplified by
assuming that the velocities from the source are small,
thus making equation (10) or (10a) applicable. To find
the singularity for this case we may apply a relative sys-
tem in which the undisturbed medium is at rest and the
source moves with the constant velocity -u,. We may first
assume an "explosion wave" (knallwelle) of spherical shape
expanding in all directions, the potential of which is ob-
tained by assuming in equation (7) a funé¢tion f, which
is different from zero only within a very short interval
and vanishes outside this interval. This is the case when
a-small volume suddenly begins to increase and then main-
tains its new magnitude. It may then be assumed that a -
continuous series of such short expansions proceeds in
such a manner that the center of the expansion travels

forward with the veloecity -ug. Since we are here consid-

ering sound wave expansions obeying the differential equa-
tion (5), the potential for the whole process may, on ac-
count of the linearity of the differential equation, be
built up by the superposition of the potentials of the in-
dividual waves. When the expansion has continued long
enough and the center of the expansion is momentarily at
the origin of cosrdtmates, the'computatlon-leads to- the
following formula:

o = ' (11)

2
v/fxz + (l_~ %Q— (52 + za)
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_When Uy is smaller.than the sound velocity ¢, then
the surfaces of constant-potential instead of being spher-"

ical as is the case .for incompressible fluids, are flat-

tened ellipsoids of reévolution. The more closely the ve- -

locity -u, approaches the velocity of sound the more
strongly flattemed the ellipsoids bécome. When wu, ex-
ceeds the velocity of sound, however, then the solution
is different from zero oanly w1th1n a cone of angle a,
which is determined by

' - 1
tan o = £ ——CZIDToo=
2
u
/5
¢
or sin a = + = (12)
Uo

The same result is also -obtained when the momentary
position of the -individual waves is investigated (fig. 1).
The angle. O .is known as the Mach angle. (It may here be
remarked that when wu, < ¢ the waves fill space in all
directions, whereas for the case 1o > c, they £ill only
the cone of fig. 1.) For wug > c, the constant potential
surfacés are hyperboloids of two gheets having the given
cone as asymptotic surface. Only one of these sheets has
physical reality, as is easily seen from our description
of  the formation of the source potential from the explo-
sion waves. Where still another potential is to be built
up by the superposition of such sounrces, it is to be ob-
served that everywhere outside the given cone, the potean-
tial of the individual sources is to be set equal to zero
and takes on the values of formula (11) only within the
cone.

ITI. ELOWS WITH "SUBSONIC" VELOCITIES - LINEAR THEORY

Formula (11) enables us to obtain a general relation

for the solution of the differential equation (10a) and
this we shall discuss further on., For "subsonic" veloci-
ties it is possible to relate every solution of this 4if-
ferential equation to a solution of the differential equa—
tion for constant volume potential flow
2 2 2
22,282,232,
3t " m® T g
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if we write ' N
o w2 u.2 (713/)
) E=%; m=1% /1‘- ;—}—; (=2 ,/1~ -g:‘?r— : N

and assign the same potentials to the corresponding points

of each space (reference 2)., The assumption must naturally

be made, as for differential equatiom (10a), that the ve-
locities derived from the potential are small compared

with the basic velocity wu,. The application cannot there-
fore be made to flows in which a Sstagnation point occurs,
since in this case the deviation from wu, 1is just as '
large as wu, itself. It is permissiblg, however, to ap- d

ply the equation to flow about very narrow shapes having a
sharp entrance edge. Given the potential flow &, for an

incompressible fluid, the guestion next arises as to what
: is the form of the contour that corresponds by the above
: rules to the potential of the compressible fluid. The

d
slope a% = E may, to a sufficient approximation, be put

equal to
v. 1 9%
u  uy 9y
Correspondingly, T
—
.‘ a1 99, ... 30 _ 20 /1 2%
ﬁ af u, on dy .9m c
A dy _ dn ug2
we have iz —'dg 1 &

We then obtain the result that the entire contour must be
made thinner than that corresponding to the incompressi-

ble fluid with egual potential values approximately in the
- 5 . :

u
ratio* 1 - ES— and similarly the angle of attack must

é *It may be pointed out that the points on. the contour do
3

not correspond to the above transformation equations for
the potential, which regquire an increase in the y ordi-
nateés for points of equal pétential.  The above..conclu-
siors are nevertheless applicable since the difference in
the flow direction for points-lying near each other differ
only by a second degree order from the result given above
on account of the slenderness of the contour under consid-
eration,
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be made smaller in the same ratio.*

We must still consider the pressure distribution on
the surface. This is determined according to the Ber-

' ou
noulli equation by the term pu zz for which we may put

pug 5;% . Since we had set ¢ = x and ¢ was to have
the same value at corresponding points, this magnitude re-
mains constant in the transformation, and the same holds
true for the pressures themselves. The tendency toward
flow separation may therefore -also be expected to be the
same for both cases. The conclusion follows that in or-
der to avoid separation of flow it is necessary to make
the profiles of the airfoils, etc., flatter and the angles
of attack must be made correspondingly smaller, as the ve-
locity wu, approaches the velocity of sound. The maxi-

mam lifts attainadle according to this approximate theory
will be the same as those that may be expected for the in-
compressible flow. Actually, it is found+that on approach-
ing the velocity of sound, the relations are considerably
less favorable than indicated by this approximate theory.
The chief reason for this is the fact that the superim-
posed velocities are not actually small compared to the
basic velocity wug and consequently it is possible for
points on the suction side to exist at which the velocity
of sound is either reached or excecded, so that considera-
ble deviations from our computations are to be expected.

It may still be asked how the fact is to be explained
that as the velocity of sound is approached, the same 1ift
is obtained with a less cambered profile and at a smaller
angle of attack. The explanation lies in the fact that

*It is also possible to coordinate the points in such a
manner that the potentials ¢ in the Xxyz space will be &
multiple of the potentials at the corresponding points of

u.2
the £tn{ space. If the multiple chosen is 1//1 - gg~
then %%-: %%, that is, the profiles and angles of attack
will now agree. The differences in pressure (see below)

——z
will now be raised in the ratio 1/¢/1 - ;%—. and the

tendency to separation will therefore be increased,
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according to the transformation given above, the potential
field and therefore also the velocity field in the direc-
tion at right anglées to the - ‘basic -velocity extends further
- u,? |
in the ratio 1/ - go_ and so the vertical velocities,
\L\( _.; S . u =]

which are smaller in ‘the ratlo 1 - Eg— “produce in this

extended region a total impulse of the same magnitude as
would be the case for incompressible flow.

For basic velocities above that of sound this analogy
cannot naturally be applied, since the transformation for-
mula (13) would in this case give an imaginary result.
Here other methods must be used. (See sections 5 and 6.)

IV. ¥LOWS WITH SUBSONIC VELOCITIES -~ HIGHER APPROXIMATIONS

If it is desired to obtain a better agreement with
fact than is afforded by the linear theory, it is possible,
starting either from the theory of potential flow for in- ’
compressible fluids or from the solutions of the differen-
tial equation (10a), by a step-by-step process to obtain
closer approximations resulting from the application of
the exact equation (9a). Computations of the first kind
were carried out by many investigators (references 3 and 4)
but, to the best of my knowledge, no computations of the
second kind.* 1In practice these computations are rather
laborious and do not agree very well with each other. It
is therefore a noteworthy fact that it is also possible to
find good approximations on the basis of electrical anal-
o0gy, whereby a good approximate solution may be obtained -
only for the case, however, where the velocity of sound is
ypot attained at any point of the region considered. Since
this method has been worked out by Professor G. I. Taylor
(reference 7), who will give a more detailed report on it
at this session, I shall not touch on this subject any
further.

Through three short notes by Riabouchinsky (reference
8). and Demtehenko (references 9 and 10), in the Comptes

*G. Braun (reference 6) has obtained solutions in ‘the
neighborhood of ithe sound velocity by applying a variation
principle of Bateman (reference 5).
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Rendus of the Paris Academy, 1932, and o0ld work by
Tchaplygin (reference 11) writtem in the Russian language
in 1904 became known, wherein it was shown that for the
case of two~dimensional flow, the problem may, by trans-
formation to new coordinates (rectangular or polar), be
presented in such a form that a potential flow between two
plates at a predetermined variable distance apart, may be
represented by an electric flow in an electrolyte of vari-
able depth. One coordinate X will be a function of the
ratio of the local velocity to the maximum (which may nat-
urally also be written as a function of the ratio of the
density to the maximum density); the other coordinate @
is the direction angle of the velocity of the flow, the
variable distance between the two plates being a function
of the first coordinate only. Since it is possibdle to
compute mathematically the solutions for such regions
"whose boundaries are determined by the lines X = constant
and 6. = constant, .it -becomes possible to solve those
problems of the Helmholtz-Xirchhoff type where flat walls
(direction O = constant) and free boundaries (constant
velocity, therefore X = constant) are considered for the
case where compressibility is taken into account. For one
particular condition which, though not occurring in na-
ture, may be applied approximately when the difference in
density is moderate, the problem may even be formulated

as a usual type of potential flow in the coordinates ¥
and 6. Demtclenko (reference 10) showed among other
things that for the Kirchhoff flow against a flat plate,
when the velocity of the flow is half that of sound, the
resistance 1s about 7 percent higher than the Kirchhoff
resistance.,

V. ZFLOW WITH SUPERSONIC VELOCITY ~ LIKEAR THEORY - FLOW

AROUND A CORWER

I shall now consider the flows for which the velocity
is greater than the velocity of sound (the so-called "su-
personic velocity"). We may lLere again start out from
formula (10) or (10a). If a two-dimensional flow is con-
sidered, then equation (10a) now reads as follows:

2 2 2
2 & Mo \ 3 ¢
3x® c? ) dy? © : (19 )

The general solution of this linear differential
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equation may immediately be set down. It is

O =F (y - x tan a) + Fz .(y +.x tan «a) (14)
where again
2‘ -
g - o :
tan a = 1/ /5 - 1 ‘ (15)
) e .
so that sina=— - wm
. ) 1 0 R

According to the reasoning that led from eguation (9a)
to equation (10), equation (14) is the solution for the
neighborhood of a point, when the X axis is chosen to lie
in the direction of the flow., The functions B and Ty -

are subject to the limitation only that the magnitudes ap-
pearing in the differential equation (10b) exist; otherwise
they may be taken guite arbitrarily. When the functions

F, and TFp are taken to represent a wave form, then equa-—

tion (14) represents the superposition of two wave trainms,
erossing each other at the angle #*a with respect to the
mean direction of flow. For a more general solution, the
wave trains are such that for each position represented by

equation (15), u, corresponds to the local mean veloc-

ity at that point. Since such waves may be photographed
(see fig. 2), it is possible by méasuring the angle 2«
between the two crossing wave trains to obtain the ratio
c¢/ug. (It should be noted that ¢ is not the constant

sound velocity of the gas at rest but the variable sound
velocity of the adiabatically cooled gas.) The direction
of the flow bisects the angle.

Let us now congider the following special case of
flow. In equation (14) let ¥ =0, F, = 0 for positive
values of the argument y - x tan a; for negative values
let F;, =M (y - x tan o). In the neighborhood of zero
it is possible to pass to the 1limit zero by means of a
transition arec, or the radius of curvature of the transi-
tion arc may be used. The above formula corresponds to
the limiting value. To obtain the total potential, the
potential of the straight streamlines Ug-o» X must be
added. In the region x> y cot o the components of the
. velocity then become
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u=é-;=uo - A tan

(16)

Q

¢ _
7 = A

<
il
o

In our example, therefore, the flow is parallel in
front of the boundary line y = tan ¢ and is in the direc-
tion of the X axis. Behind the boundary line it is also
rectilinear but makes an angle B +to the X axis given by
(sce figs. 3 and 4)

A A

v :
tan B = ;= ug = A tan @ U N (17)

If the density and pressure upstréam from the boundary
y = x tan:a are denoted by p, and pg, respectively,

and the pressure below the boundary by p, then approxi-
mately '

P = Po T 7 Py B (u - uo)
(18)

1l

Po Bo N tan a
Along the boundary y = x tan o, therefore, there is a

pressure jump (which may be converted into a steady pres-

sure rise by introducing the transition curves mentioned

above in the function ©F;). The fluid particles are accel-

erated in the direction of the  pressure rise, that is, nor-

mal to the boundary line Y = y tan . This result may

also be obtained directly from equatlon (18), from which

the direction of the velocity vector is obtained, as fol-

lows:

Positive values of A and B correspond to a conden-
sation; negative values to a rarefaction. It should be
stressed, however, that the above computation is derived
from the approximated linear differential equation (10a)
and is therefore valid for small pressure differences and
small angles of deviation only.

What may be expected for larger deviations may clearly
be seen if we take two pressure jumps of the same sign at a
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short distance from each other and see what we get from
equations (18) to (18). The result is obtained that for
the case of a pressure rise  the two pressure. jumps con-
verge; for a pressure drop they diverge. ©Not only is the
direction of flow in the second field rotated by the an-
gle B with regpect to the first, but the velocity behind
the first pressure wave is smaller and therefore the Mach
angle 0Oz ~1s larger than «o;. For a rarefaction wave, on

the contrary, the velocity behind the first wave is - -larger
and therefore the HMach angle smaller. The two wave fronts
converge or diverge accordingly: by the amount B + dz -~ Q1.

The transition from the type of flow Jjust considered
to that of a continuously curved flow may now easily be
effected by replacing the first streamline (given wall
along which the flow takes place) by a polygon of very many
sides. From each edge of the polygon, waves start out ex—
panding and diverging in case of a convex wall and con-
tracting and converging in case of a-concave wall. In
this latter case it is also possible that the waves meet
each other completely. The compression may then assume an
unsteady finite value (the so-called "compression shock"),
This behavior of compression and condensation waves start-
ing out from a curved wall is entirely analogous to the re~
sult already mentioned obtained by Rlemann for plane waves
of finite amplitude,

We see, moreover, from the result of a transition to
a boundary of radius:of curvature zero, that for a wall
which forms a convex side inclined at an angle =-B (see
fig. 6), the flow remains unchanged up to a surface form-
ing an angle @1 with the direction of flow, then expands
within an angle =f + d; = a2 maintaining the pressure
and velocity constant along each ray; then in the direc-
tion ~f again passes over into parallel flow with con-
stant velocity. The quantitative relations for a flow of

this type for a gas that obeys the law P = P, - (p/p )

. " -
were given in the Gottingen dissertation of Th. Meyer in

1908.* In case of a concave edge there is a compression
shock which lies between the angles aq and B + az. In

front of and behind the condensation shock the flow shows

constant veloc1ty and “constant pressure.. . . . e

*See reference 12.
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I

- VI, APPROXIMATE METHOD FOR GENERAL TWO-DIMENSIONAL

" SUPERSONIC FLOW

I shall now turn to the case where the flow is af-
fected not only by a single wall but also by an oppositely
lying wall. In this case the waves pass through each oth-
er from opposite sides and also deviate from their origi-
nal direction. The relations are most clearly brought out
.by the following procedure.

In the same manner as, for the purpose of certain
approximate calculations, a curve is ‘replaced by a series
of straight-line steps or a polygon, it is possible to re-
place the continuous deviation of the velocity direction
in a supersonic flow by a series of sudden deviations. of
the kind shown in figures 3 and 4. If the angle £ of
these deviations is chosen to be of the same size in all
cases, for example 2°, then only such directions occur
whkich differ by an integral multiple of f; that is, in
our example, of 2°. 1If we start from a definite super-
sonic velocity, then on the basis of the Meyer formula,
only certain discrete values of the velocity may occur.

In order to obtain a better idea of these velocities and
directions, the method suggests itself of drawing all the
possible velocity vectors of the system at each point. If
in this figure we trace those conditions corresponding to
the case we have Jjust considered, namely, where waves are
assumed to start out from one wall, ‘then all the points

in the velocity picture corresponding to that state 1lie on
a single curve (the thick curve of fig. 7). The entire
system of velocity vectors for the case where waves travel
into the region under consideration from both sides is
then evidently obtained by drawing curves of the same sort

tkrough all points lying 40 apart on a circle w = constant
(w=,u2 4+ v8), All the intersection points so obtained

then represent the end points of the velocity vectors possi-
ble in this system,

According to a relation shown in a previous section,
the direction -of the vector difference of the velocity, in
front of and behind a wave, is perpendicular to the wave
front. This relation enables us to construct graphically
the entire flow picture for any flow when the magnitude
and direction of the velocity at the entrance section, and
either the pressure or direction of flow at the side edges,
are givon beforehand. For the permanent gases the curves
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of figure 7 are epleycloids and it is possible to construct
the .curves easily on the drafting board by using a rotata-

BYe ellipse to draw the-directions normal to the curve tan-

gents, as Busemann has shown.

In order to maintain constant the flow direction along
the wall, for the case of a straight wall, or maintain the.
velocity constant in the case where a constant pressure is:

.given, in accordance with Bernoulli's law, it is necessary

to reflect the expansion and compression waves that reach
the boundary. As may easily be seen from figure 7, at a
straight wall condensations are reflected as condensations
and rarefactions as rarefactions; at a free jet boundary,
however, condensations are reflected as rarefactions and
rarefactions as condensations. For curved walls, the
walls are replaced by a polygon of angle £ and waves
start out from each corner.

In order to obtain a clear construction it is advisa-
ble to number each epicycloid, one set with numbers increas—-
ing in clockwise order, the other set decreasing in clock-
wise order. It may then easily be seen that the difference
of these sets of numbers is a measure of the angle of the
flow direction, while the sum is constant on a radius; in
other words a function of the velocity. It may also be re~
marked in this connection that, as in the treatment of the
subsonic velocity by Tschapligin, the angle of the flow di~-
rection and a function of the velocity again appear as de-
ciding factors,

It is possible by a contact transformation to trans-
form equation (9a) so that wu, v, and w Dbecome the inde~-
pendent variables; and in the case of two-dimensional flow
in the plane of w and v, it is possible to pass over to
polar coordinates and so introduce the radius and the an-
&le as new independent variables. As the form of equation
(92) already shows, the contact transformation offers the

advantage that the differential equation becomes linear in

the dependent variables, since the expressions 1 - u2/c2,
etc., are now functions of the coordinates. By a suitable
stretching of the radii - that is, by introducing a fune-
tion of the radius instead of the radius - it is possible
to simplify still further the differential equation as was
done by Tschqpllgin. "When the relations.-between the waves
in the field of flow and the corresponding velocity field
are somewhat more closely analyzed, it is found that to
each field of flow limited by two waves in ‘the one system
and two waves of the other system there corresponds a point
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in the velocity field (since according to the assumption
made the velocity is to be constant in -each such field).
Conversely, to a point of intersection of two waves in the
field of flow there corresponds a guadrilateral in the ve-
locity field, since at the point of intersection four
fields of different velocities meet. Both of these fig-
ures are therefore the reciprocals of each other, just
like a truss diagram and its reciprocal force diagram.

The similarity goes even further. Just as a truss together
with its force plane may be represented by the Airy stress
surface, so in this case there exists a corresponding
function, namely, the function wux + vy - & obtained from
the potential ¢ by the contact transformation, -~ -~

The graphic method here described, to which there nat-
urally corresponds an analytical method derived on the same
basis, offers a very convenient means of discussing all two-
dimensional supersonic flows. Applications of this method
have been made to the discharge from nozzles, the flow
about streamlined bodies, airfoils, etc. See A. Busemann
(reference 13) or the examples given in his article in the
Handbuch der Experimentalphysik (reference 14).. For rota-
tional symmetric flows there are no such simple methods.
The analogous cases to the flow around a corner, the flow
at the tip of a cone of finite angle, have been solved
graphically by Busemann (ref:rence 15) and analytically by
G. I. Taylor and J. W. Maccoll (reference 16). Solutions
for the general case of supersonic flow about a body of
rotation have been given at least by approximate linear-
ized methods by Th, v. Karman and N. B, Moore (reference
17), which methods are chiefly applicable to very slender
bodies.

VII, PASSAGE THROUGH THE VELOCITY OF SOUND

The methods described in sections 3 and 4 for the
flow with subsonic velocity approach one another only
provided the velocity of sound is nowhere reached. The
methods discussed in sections 5 and 6 for supersonic ve-
locities are similarly applicable only when the velocity
is everywhere greater than the sound velocity. VNeither
of these two methods therefore provides any information
about the manner in which passage through the velocity of
sound takes place. There are, however, solutions for
such cases that have been obtzined some time ago. The
first one, given by T. Meyer (reference 12), was obtained
by a power series development in the coordinates =x and ¥y
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of a point lying on the curve u = c¢. It turned out that
the flow potential could be developed at such a point and

‘tests showed g£00d agreement with the. computatlons. An-

other example was given by G. I. Taylor (reference 18)

This is the curved line flow in a usual potential vortex,
where the velocities are exactly as large as the velocities
in the potential vortex of an incompressible fluid. ' Both
of these eéxamples, the one with a straight mean streamline
and an- - increasing ve1001ty in the direction of flow, the
other with curved streamlines and a constant velocity along
each streamline, allow us t0 conclude that in going from
subsonic to supersonic velocities a continuous passage
thirough the sound velocity may be expected. It is to Dbe
noted, however, that in the supersonic velocity region it
is very easy for conditions to be set up such that a se-
ries of infinitesimal condensation waves combine to form a
condensation shock of finite magnitude. In the passage
from large velocities to smaller such condensation shocks
occur almost regularly. In this connection it should also
be mentioned that, in contradistinction to potential flows
with subsonic velocities, which are symmetrical forward and
aft about bodies that are themselves symmetrical at both
ends, a potential flow with svpersonic velocities i1s proba-
bly never symmetrical because the condensation and rarefac-
tion waves starting out from the walls of the body always
travel obliquely toward the rear and never forward. Per-
haps it is still possible by taking this lack of symmetry
into account, to solve analytically more of those cases of
flow where passage from subsonic to supersonic velocities
occur, especially when the supersonic region is limited in
extent, as may be expected, for example, in the flow about
cylinders, etc.

From the analytical standpoint, for steady friction-
less flow, it is possible by reversing the velocities of
one solution to obtain another solutionm. In applying this
method to a symmetrical body or channel 'with nonsymmetrical
flow forward and aft, we thus obtain by reflection a sec~
ond solution different from the first and with the same
flow direction. The passage from the single valued sym-
metrical solution for the subsonic velocities to the two-
valued solution indicates the existence of a special kind
of branching position., This may perhaps be the reason for
the fact that the analytical methods that have been.used up
to the present have ceased to converge. 3By the application
of the direct methods of the calculus of variations, G.
Braun (reference 6) was able to obtain solutions for the
branching positions, which solutions, however, should be
applicable to infinitely small deviations only.
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Here I should 1like to say a. 1little more about the com—
pression shocks. The points in front of and .behind the
shock do not lie on an adlabatlc, but rather there is an:
increase in entropy due to the irreversible proeess. The
magnitude . that remains constant throughout the condensa-— .
tion shock is the total energy = kinetic energy + heat
content; per unit mass =‘w3/2 + I . (the heat content I =
U + pV . is also called the enthalpy). In the general case
the direction of flow forms an angle with the normal to
the impact surface. These relations assume their simplest
form for the two—-dimensional compression shock. If the
normal to the impact plane is taken as the X axis and the
direction of flow is in the XY plane, the following equa-
tions result:

Py Uy = Pg Up wewrnnvnnnn (continuity)
r, *+p, ulg- = Pa +* po ugg ...... (impulse in the X
: : direction)
V1 = Va3 ottt nne s o (impulse in the Y
direction)

t
| o
Pan)
[+]
]
i)
+
<
0
w©
St
4
—
0

% (vui®+v,®) + 1, ..(energy)

(The index 1 for the condition before the'impabt, index 2
for the condition aftcr the impact.)

The computations for this problem, using the equa-
tions of st@te for ideal gases as a basis, were carried out
by Th. Meyer (reference 12) after Hugoniot (reference 19),
and independently Stodola (reference 20) had previcusly
explained the behavior of the normal compression shock.

The relations are clearly brought out in a diagram given
by Busemann (reference 21). 1In the veloc1+y-f1eld picture
he draws for each given initial velocity, the "impact po-
lar," namely, the geometrical locus of all the velocity
vectors for the state after the impact and thus obtains
curves like those of figure 8, where f denotes as before
the deviation angle of the flow, ¥ the angle between the
impact plane and the direction of flow. The smallest val-
ue of ¥ is obtained for shocks with small velocity differ-—
ence and naturally agrees with the Mach angle a. The
largest differonce in velocity is obtained in normal im-
ract. The velocity behind the normal impact is always
smaller than that of sound. The increasc in entropy prac-
tically denotecs a 1ower1ng in the pressure compared to
that which would follow from the Bernou111 equation,. This
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5 difference in pressure is only insignificant, however, when
) _the difference in velocity in front of and ‘behind the shock
i ‘is not too great. The process in-any case involves a loss
g in energy. : ' '

b ' VIII. APPLICATION TO AIRFOILS

Before concluding we shall make a few obser¥ations on
the application of the foregoing discussion to airfoils,:
- As far as subsonic velocities are concerned, it may be
- pointed out that in the neighBorhood of the wing tip consid-
* erable supersonic velocities are set up which for high
1ift coefficients attain double the values of the flight -
velocity. It may therefore be expected that at speeds of
170 m/s (380 miles/hr.) the velocity of sound may already
be attained locally. This may explain the fact that in
the region of 200 m/s (450 miles/hr.) there is already a
notable decrease in the 1ift coefficient,

8 As regards the induced velocity, 1t should be pointed
out that it is possible to obtain the wing 1lift as well as
the induced drag from the trailing vortices behind the
wing. The velocities in these vortices are, however, in
each case small compared to the velocity of sound, so that
the usual laws for incompressible flow may be applied with-
; out objection for the computation of the 1ift and induced

! drag. In computing the 1ift distribution of a wing of
given form, however, it is necessary to take into account
the fact that due to the compressibility, the value of

deg . s . Tug
E&ﬁ is increased in the ratio 1 : 1l - —= (as far as

thée approximate formula remains applicable).

For the profile characteristics at supersonic veloci-
ties, an approximate formula may be derived from the appli~-
cation of the consideratians of section 5, If we consider
a flat plate that is ineclined by the angle p to the di-
rection of flow (fig. 9) (Ackeret reference 22), then on
the pressure side the relations of figure 3 hold and there
/ results therefore a pressure rise of an amount that is
' easily computed from formuwlas (17) and (18). On the suc-
tion” side there is a corresponding lowering in pressure
y as regquired by the above-mentioned formulas for a mnegative
angle., We thus obtain the 1ift coefficient

3. | cy = 45/M/F§§ -1 - (19)




22 N.A.CisA. Téchnical Memorandum No. 805-

It is a noteworthy fact that the suction force, which
exists in the case of subsonic veldcities at the forward
edge, is entirely missing in a flow of:this type and there~
fore the resulting force is here not perpendicular to the
direction of flow, but normal to the surface, so that even
for a frictionless fluid the lift-drag ratio becomes

C

c u2
w o - -8 — - -
Ca . B 4 /;2 1 . (20)

It may be seen tha%t for a given value of c, this ratio

is favorable Jjust above the velocity of sound, dbut with in-
creasing velocity, becomes considerably less favorable, (At
very large speeds the 1ift coefficients will likewise be
very small.) Thesc increased drags above the velocity of
sound bear a connection with the waves that travel outward
from tie moving object. Buscmann {(reference 23) was able

to show that this wave energy was converted into hecat part-
1y near the wing and partly at a great distance away.

As far as the induced drag is concerned, it follows
different laws at speeds above the velocity of sound from
those below the velocity of sound. For an unwarped rec-—
tangular airfoil the induced drag is all included in the
-triangular regions at each end that are limited by the
Mach angle (cross-hatched areas in fig. 10). It is, more-
over, not clearly separable from the wave resistance which
according to the above is also proportional to .c¢c,2 and

therefore does not have the same independent significance
as the case of subsonic velocities. According to a remark
of Bustmann, the induced drag disappears entirely when the
two triangular parts lying in the region of disturbance
are removed. '

Translation by S. Reiss,
Wational Advisory Committee
for Aeronautics.
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